Recurrence and Ergodic Theorems

Author
Affiliation

Kai Prince

The University of Manchester

Published

14 August 2025

Theorem 1 (Bergelson (1985), Theorem 1.1) Let \((X,\SigmaAlgebra{B},\Measure)\) be a probability space and suppose that \(B_n\in\SigmaAlgebra{B}\) such that \(\Measure(B_n)=b>0\) for all \(n\in\mathbb{N}\).

Then there exists a positively dense index set \(I\subset\mathbb{N}\) such that, for any finite subset \(F\subseteq I\), we have \[\Measure\left(\bigcap_{i\in F}B_i \right)>0. \]

Theorem 2 (cf. Lindenstrauss (2001), Theorem 1.2) Let \(\AmenableGroup\) be a discrete amenable group acting on a measure space \((X,\SigmaAlgebra{B},\Measure)\) by measure preserving transformation and let \(\Folner=(\Folner[N])_{N\in\mathbb{N}}\) be a tempered Følner sequence.

Then, for any \(f\in\text{L}^1(\Measure)\), there is a \(\AmenableGroup\)-invariant \(\bar{f}\in\text{L}^1(\Measure)\) such that \[\lim_{N\rightarrow\infty}\frac{1}{\CountingMeasure{\Folner[N]}}\sum_{\AmenableGroupElement\in\Folner[N]}f(\GroupAction{\AmenableGroupElement}{x})=\bar{f}(x) \] for \(\Measure\)-almost every \(x\in X\). In particular, if the \(\AmenableGroup\) action is ergodic, then \[\lim_{N\rightarrow\infty}\frac{1}{\CountingMeasure{\Folner[N]}}\sum_{\AmenableGroupElement\in\Folner[N]}f(\GroupAction{\AmenableGroupElement}{x})=\int f(x)\ d\Measure(x) \] for \(\Measure\) almost every \(x\).

Corollary 1 (cf. Host (2019), Corollary 8) Let \((X,\AmenableGroup)\) be a topological dynamical system where \(\AmenableGroup\) is an amenable group, \(\Measure\) an ergodic measure on \(X\) and \(\Folner\) a tempered Følner sequence. Then \(\Measure\)-almost every \(x\in X\) is generic for \(\Measure\) along \(\Folner\).

References

Bergelson, V. (1985). 'Sets of recurrence of zm-actions and properties of sets of differences in zm', Journal of the London Mathematical Society, s2-31 (2), pp. 295–304. https://doi.org/10.1112/jlms/s2-31.2.295.
Lindenstrauss, E. (2001). 'Pointwise theorems for amenable groups', Inventiones mathematicae, 146 (2), pp. 259–295. https://doi.org/10.1007/s002220100162.
Host, B. (2019). 'A short proof of a conjecture of erdös proved by moreira, richter and robertson', Available at: https://arxiv.org/abs/1904.09952.