Measure Theory and Ergodic Theory ## Kai Prince ## 2025-08-14 ## Table of contents Backlinks 1 Outlinks 2 ## **Backlinks** • Group The foundational knowledge relating to Measure & Ergodic Theory, that has not been covered elsewhere, was provided by Robertson (2023). **Definition 0.1** (Gleason (2010)). A topological measure space (X, \mathcal{B}, μ) is a topological space (X, τ) such that \mathcal{B} is generated by the open sets defined by the topology τ , i.e., $\mathcal{B} = \operatorname{Borel}(X) = \sigma(\tau)$, and μ is a measure on this space. A Borel measure is the measure μ on a topological measure space (X,\mathcal{B},μ) where (X,τ) is Hausdorff. A regular (Borel) measure is a measure on a Borel measure space (X, \mathcal{B}, μ) such that the following hold: - 1. *Finite Compact Measure*: For any compact subset $K \subseteq X$, then $\mu(K) < \infty$. - 2. *Outer Regularity*: For any $B \in \mathcal{B}$, then $$\mu(B) = \inf{\{\mu(C) \mid B \subseteq C, C \text{ is open}\}}.$$ 3. *Inner Regularity*: For any $U \in \tau$, or, in other words, any open subset $U \subseteq X$, then $$\mu(U) = \sup \{ \mu(K) \mid K \subseteq U, K \text{ compact} \}.$$ A left-Haar measure [or right-Haar measure] on a topological group (Γ, τ) is a non-zero regular Borel measure μ on Γ such that $\mu(\gamma \cdot B) = \mu(B)$ [or $\mu(B \cdot \gamma) = \mu(B)$] for all $\gamma \in \Gamma$ and $B \in \sigma(\tau)$. ## **Outlinks** - Density - Følner sequence - Actions - Factor Maps - Furstenberg's Correspondence Principle - A Short Proof of a Generalised Conjecture of Erdős for Amenable Groups - Recurrence and Ergodic Theorems Robertson, D. (2023). 'MATH41021/61021 measure and ergodic theory', Available at: https://personalpages.manchester.ac.uk/staff/donald.robertson/teaching/23-24/41021 (Accessed: 22 January 2024). Gleason, J. (2010). 'Existence and uniqueness of haar measure',.