Functional Analysis

Kai Prince

2025-09-05

The foundational knowledge relating to Measure & Ergodic Theory, that has not been covered elsewhere, was provided by Jamneshan and Kreidler (2025).

Definition 0.1. For a Hilbert space H,

- 1. A linear isometry is a linear map $U: H \to H$ such that ||Uf|| = ||f|| for all $f \in H$ (and thus injective).
- 2. A linear isometry, U, is a unitary operator if it is surjective (and thus bijective).
- 3. We write $\mathcal{U}(H)$ for the set of all unitary operators $U: H \to H$.
- 4. For a group Γ , we call a group homomorphism $U:\Gamma\to\mathcal{U}(H),\ \gamma\mapsto U_{\gamma}$ a unitary representation of Γ on H.

Definition 0.2. Let $J:(Y,S)\to (X,T)$ be an extension of measure-preserving systems. Then $E=U_J(\mathrm{L}^2(Y))$ is an invariant Markov sub-lattice of $\mathrm{L}^2(X)$, i.e.,

- 1. E is a closed linear subspace of $L^2(X)$,
- $2. 1 \in E$
- 3. |f|, $\operatorname{Re}(f)$, $\operatorname{Im}(f) \in E$ for every $f \in E$, and
- 4. U_T $f \in E$ for every $f \in E$ and $\gamma \in \Gamma$.

Definition 0.3. Let H be a Hilbert space. $\mathcal{L}(H)$ is the space of all bounded linear operators from H to H.

A family $S \subseteq \mathcal{L}(H)$ is a semigroup (of operators) if $UV \in S$ for all $U, V \in S$. It is a contraction semigroup if, in addition, $||U|| \leq 1$ for all $U \in S$.

We call

$$\operatorname{fix}(\mathcal{S}) := \bigcap_{U \in \mathcal{S}} \operatorname{fix}(U) = \{ f \in H \mid Uf = f \text{ for every } U \in \mathcal{S} \}$$

the fixed space of \mathcal{S} .²³

¹Note, $\mathcal{U}(H) \subseteq \mathcal{L}(H)$ and ||U|| = 1 when $U \in \mathcal{U}(H)$, so $\mathcal{U}(H)$ is a contraction semigroup. ²fix(\mathcal{E}) $\subseteq H_{A}$.

³Meeting Notes: 0-dimensional. Next most simple case would be scaling (1-dimensional), and then rotations on a place (2-dimensional).

The *closed convex hull* $\overline{\text{co}}$ A is the closure of the set of all convex combinations of elements of A.

The closed linear hull $\overline{\lim} A$ is the closure of the set of all linear combinations of elements of A.

Definition 0.4. Let $U: \Gamma \to \mathcal{U}(H)$ be a unitary representation of a discrete abelian amenable group Γ .

A group homomorphism $\chi: \Gamma \to \mathbb{T}$, where $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$, is called a *character*. The *dual group* Γ^* of Γ is the set of all such characters equipped with the multiplication given by $(\chi_1 \chi_2)(\gamma) := \chi_1(\gamma) \chi_2(\gamma)$ for $\gamma \in \Gamma$ and $\chi_1, \chi_2 \in \Gamma^*$.

Definition 0.5. Let

$$M_f := \lim \{ U_{\gamma} f \mid \gamma \in \Gamma \}.$$

We call a subset $M \subseteq H$ an invariant finite-dimensional subspace if M_f is finite-dimensional and $U_{\gamma}f \in M$ for all $f \in M$ and $\gamma \in \Gamma$.

The closure

$$H_{\mathrm{ds}} = \overline{\big| \big| \{ M \subseteq H \mid M \text{ invariant finite-dimensional subspace} \big\}} \subseteq H$$

is called the discrete spectrum part of $U^{.5}$

Proposition 0.1 (cf. Jamneshan and Kreidler, 2025, Proposition 5.1.10). The eigenspaces $ker(\chi - U)$ for $\chi \in \Gamma^*$ are pairwise orthogonal. For $M \subseteq H$, then the following are equivalent:

- 1. M is an irreducible invariant finite-dimensional subspace.
- 2. M is an invariant linear subspace which is at most one-dimensional.
- 3. There is $\chi \in \Gamma^*$ and $f \in ker(\chi U)$, such that $M = \mathbb{C} \cdot f$.

Definition 0.6. A unitary representation $U: \Gamma \to \mathcal{U}(H)$ of a topological group Γ is *strongly continuous* if $\Gamma \to H$, $x \mapsto U_x f$ is continuous for every $f \in H$.

Definition 0.7. For every discrete group Γ , the maps

$$L: \Gamma \to \mathcal{U}(\mathbf{L}^2(\Gamma)), \qquad x \mapsto L_x \tag{1}$$

$$R:\Gamma\to \mathscr{U}(\mathrm{L}^2(\Gamma)), \qquad x\mapsto R_x \tag{2}$$

with $L_x f := f \circ l_{x^{-1}}$ and $R_x f := f \circ r_{x^{-1}}$ for $f \in L^2(\Gamma)$ and $x \in \Gamma$ are strongly continuous unitary representations. We call L and R the *left* and *right regular representation* of Γ , respectively.⁶

⁴Commutator subgroup and abelianisation?

⁵Meeting Notes: In the $\Gamma=\mathbb{Z}$ case, then H_{ds} can be broken up into one-dimensional objects that corresponds to an eigenfunction.

⁶As Γ is discrete, then any map $\Gamma \to H$ is continuous for any topological space H. Thus, $\Gamma \to \mathbf{L}^2(\Gamma)$ defined by $\gamma \mapsto L_\gamma f$ or $\gamma \mapsto R_\gamma f$ is always continuous. Hence, L and R are strongly continuous unitary representations.

Assume that $U: \Gamma \to \mathcal{U}(H)$ is a strongly continuous unitary representation of a discrete group Γ . Let further P be the orthogonal projection onto the fixed space $\operatorname{fix}(U(\Gamma))$. Then

$$(Pf \mid g) = \lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{\gamma \in \Phi_N} (U_{\gamma} f \mid g)$$

for all $f, g \in H$.

If $U:\Gamma\to\mathcal{U}(H)$ is a strongly continuous unitary representation of a compact group Γ , then U has discrete spectrum.⁷

Exercise 0.1. Show that

$$H = H_{\rm ds} \oplus H_{\rm wm}$$

and what happens to $H_{\rm ds}$ and $H_{\rm wm}$ when it is averaged by the Abstract Mean Ergodic Theorem for amenable groups. 8

Proposition 0.2. Let (X,T) be a measure-preserving system. Then $L^2(X)_{ds}$ is an invariant Markov sublattice of $L^2(X)$.

Exercise 0.2 (Jamneshan and Kreidler, 2025, Lemma 6.1.12). Assume that $U:\Gamma \to \mathcal{U}(H)$ is a strongly continuous unitary representation of a discrete group Γ . Let further P be the orthogonal projection onto the fixed space $\mathrm{fix}(U(\Gamma))$. Then $(Pf\mid g)=\lim_{N\to\infty}\frac{1}{|\Phi_N|}\sum_{\gamma\in\Phi_N}(U_\gamma f\mid g)$ for all $f,g\in H$.

Jamneshan, A. and Kreidler, H. (2025). 'ISem 28: Ergodic structure theory and applications',.

$$H_{\mathrm{wm}} = \left\{ f \in H \mid \lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{\varphi \in \Phi_N} |(U_\varphi f \mid f)|^2 = 0 \right\}.$$

 $^{^7\}text{This }\Gamma$ would be the compact group behind the factor subsystem of the larger system. For example, $\Gamma=\mathbb{Z}$ for the irrational α group rotation would give us compact $G=\{z\in\mathbb{C}\mid |z|=1\}.$ The homomorphism from $\Gamma\to\Gamma$ is $n\mapsto e^{2\pi i\alpha n}.$

⁸(Proposition 5.3.3)