Følner sequence

Kai Prince

2025-08-14

Table of contents

	Backlinks	1
1	Følner Sequences 1.1 Alternative definitions for Monoids	
	Tempered Følner Sequences Outlinks	2 3

Backlinks

- Axioms
- Group
- Monoid
- Measure Theory and Ergodic Theory
- Density
- Amenable

1 Følner Sequences

Definition 1.1. We define a right-Følner sequence in Γ as a sequence $\Phi = (\Phi_N)_{N \in \mathbb{N}}$ of finite subsets of Γ satisfying

$$\lim_{N \to \infty} \frac{\lambda(\Phi_N \cdot \gamma^{-1}) \cdot \Phi_N}{\lambda \Phi_N} = 1,$$

for all $\gamma \in \Gamma$.

Definition 1.2. Similarly, we define a *left-Følner sequence* in Γ as a sequence $\Phi = (\Phi_N)_{N \in \mathbb{N}}$ of finite subsets of Γ satisfying

$$\lim_{N\to\infty}\frac{\lambda(\gamma^{-1}\cdot\Phi_N)\cap\Phi_N}{\lambda\Phi_N}=1,$$

for all $\gamma \in \Gamma$.

Definition 1.3. We call a sequence in Γ a Følner sequence if it is both a left and right Følner sequence.

1.1 Alternative definitions for Monoids

Definition 1.4. Let M be a countably-infinite left-cancellative monoid with discrete topology. We define a *left-Følner sequence* in M as a sequence of finite subsets $\Phi = (\Phi_N)_{N \in \mathbb{N}}$ satisfying

$$\lim_{N\to\infty}\frac{\lambda(m\cdot\Phi_N)\cdot\Phi_N}{\lambda\Phi_N}=1$$

for all $g \in M$.

Definition 1.5. Similarly, for a countably-infinite right-cancellative monoid with discrete topology M, we define a *right-Følner sequence* in M as a sequence of finite subsets $\Phi = (\Phi_N)_{N \in \mathbb{N}}$ satisfying

$$\lim_{N\to\infty}\frac{\lambda(\Phi_N\cdot m)\cdot\Phi_N}{\lambda\Phi_N}=1$$

for all $g \in M$.

1.2 Equivalent definitions using Set Differences

Equivalent definitions can be constructed by using set differences instead of intersections.

For example, the equivalent definition of a left-Følner sequence, Φ , in M requires

$$\lim_{N\to\infty}\frac{\lambda(\Phi_N\cdot m)\triangle\Phi_N}{\lambda\Phi_N}=0,$$

to be satisfied for all $m \in M$.

This alternative definition will be useful when looking at proving some of the properties of density.

2 Tempered Følner Sequences

Definition 2.1 (Lindenstrauss (2001), Definition 1.1). A sequence of sets $\Phi = (\Phi_N)_{N \in \mathbb{N}}$ will be said to be *tempered* if, for some b > 0 and all $n \in \mathbb{N}$,

$$\lambda \bigcup_{1 \le k < N} \Phi_k^{-1} \Phi_N \le b \lambda \Phi_N. \tag{1}$$

is referred to as the Shulman condition.

Proposition 2.1 (Lindenstrauss (2001), Proposition 1.4).

- 1. Every Følner sequence $\Phi=(\Phi_N)_{N\in\mathbb{N}}$ has a tempered subsequence. 2. Every amenable group has a tempered Følner sequence.

Outlinks

- Density
- Amenable
- Actions
- Factor Maps
- Furstenberg's Correspondence Principle
- A Short Proof of a Generalised Conjecture of Erdős for Amenable Groups
- Recurrence and Ergodic Theorems

Lindenstrauss, E. (2001). 'Pointwise theorems for amenable groups', Inventiones mathematicae, 146 (2), pp. 259–295. https://doi.org/10.1007/s002220100162.