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1 Fdlner Sequences

Definition 1.1. We define a right-Fglner sequence in T' as a sequence ® =
(®n) ven Of finite subsets of I' satisfying
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lim —————— =1,
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for all v € T'.
Definition 1.2. Similarly, we define a left-Folner sequence in I' as a sequence

O = () yey Of finite subsets of T' satisfying
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for all v € T'.

Definition 1.3. We call a sequence in I' a Fglner sequence if it is both a left
and right Fglner sequence.

1.1 Alternative definitions for Monoids

Definition 1.4. Let M be a countably-infinite left-cancellative monoid with
discrete topology. We define a left-Fglner sequence in M as a sequence of finite
subsets ® = (D) yey satisfying
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lim ——————~ =

1
N—o00 )‘(PN

for all g € M.

Definition 1.5. Similarly, for a countably-infinite right-cancellative monoid
with discrete topology M, we define a right-Folner sequence in M as a sequence
of finite subsets ® = (P ) yey satisfying
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lim ——— 2 & —

N—oo /\‘PN 1

for all g € M.

1.2 Equivalent definitions using Set Differences

Equivalent definitions can be constructed by using set differences instead of
intersections.

For example, the equivalent definition of a left-Fglner sequence, ®, in M requires

lim ——————— — =

N—oo )\(I)N O,

to be satisfied for all m € M.

This alternative definition will be useful when looking at proving some of the
properties of density.

2 Tempered Fglner Sequences

Definition 2.1 (Lindenstrauss (2001), Definition 1.1). A sequence of sets
O = (Py) yen Will be said to be tempered if, for some b > 0 and all n € N,
A oty <Ay (1)
1<k<N

is referred to as the Shulman condition.



Proposition 2.1 (Lindenstrauss (2001), Proposition 1.4).

1. Every Folner sequence ® = (P ) yen has a tempered subsequence.
2. Every amenable group has a tempered Folner sequence.
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