Density

Kai Prince

2025-08-14

Table of contents

Backlinks 1
Outlinks 2

Backlinks

- Group
- Monoid
- Measure Theory and Ergodic Theory
- Følner sequence

Definition 0.1. For $A \subseteq \Gamma$ and Følner sequence $\Phi = (\Phi_N)_{n=1}^{\infty}$, we write

$$\begin{split} \overline{d}_{\Phi}(A) &= \limsup_{N \to \infty} \frac{\lambda A \cap \Phi_N}{\lambda \Phi_N} \\ \underline{d}_{\Phi}(A) &= \liminf_{N \to \infty} \frac{\lambda A \cap \Phi_N}{\lambda \Phi_N} \end{split}$$

to be the upper and lower densities of A with respect to Φ , respectively. If these agree, then we can write

$$d_\Phi(A) = \lim_{N \to \infty} \frac{\lambda A \cap \Phi_N}{\lambda \Phi_N}$$

to be the density of A with respect to Φ . We also define the upper Banach density of A by

 $\overline{d}(A) = \sup\{d_\Phi(A) : \text{for F\"olner sequences } \Phi \text{ where } d_\Phi(A) \text{ exists}\}.$

Proposition 0.1 (Monotonicity). Let $A, B \subseteq M$ be subsets. For $A \subseteq B$, we have

$$\overline{d}_{\Phi}(A) \le \overline{d}_{\Phi}(B),$$

and

$$\underline{d}_\Phi(A) \leq \underline{d}_\Phi(B).$$

Proposition 0.2 (Translation Invariance). Let $B \subseteq M$ be a subset. For all $m \in M$, we have that

$$\overline{d}_\Phi(B) = \overline{d}_{m\cdot\Phi}(B) = \overline{d}_\Phi(m\cdot B)$$

and

$$\underline{d}_{\Phi}(B) = \underline{d}_{m \cdot \Phi}(B) = \underline{d}_{\Phi}(m \cdot B).$$

Lemma 0.1 (Upper/Lower Density Pairwise Additive). Let $A, B \subseteq M$ be subsets such that $d_{\Phi}(A)$ and $d_{\Phi}(B)$ both exist, then we have

$$\begin{split} \overline{d}_{\Phi}(A \cup B) + \underline{d}_{\Phi}(A \cap B) &= d_{\Phi}(A) + d_{\Phi}(B), \\ \underline{d}_{\Phi}(A \cup B) + \overline{d}_{\Phi}(A \cap B) &= d_{\Phi}(A) + d_{\Phi}(B). \end{split}$$

Further, we have $d_{\Phi}(A \cap B)$ exists if and only if $d_{\Phi}(A \cup B)$ exists.

Outlinks

- Følner sequence
- A Short Proof of a Generalised Conjecture of Erdős for Amenable Groups